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The bottom friction and the limited vertical extent of the water depth play a significant
role in the dynamics of shallow wakes. These effects along with the effect of the
strength of the shear layer define the wake parameter S. A nonlinear model, based
on a second-order explicit finite volume solution of the depth-averaged shallow water
equation in which the fluxes are obtained from the solution of the Bhatnagar–Gross–
Krook (BGK) Boltzmann equation, is developed and applied to shallow wake flows
for which laboratory data are available. The velocity profiles, size of the recirculating
wake, oscillation frequency, and wake centreline velocity are studied. The computed
and measured results are in reasonable agreement for the vortex street (VS) and
unsteady bubble (UB) regimes, but not for the steady bubble (SB). The computed
length of the recirculation region is about 60 % shorter than the measured value
when S belongs to the SB regime. As a result, the stability investigation performed
in this paper is restricted to S values away from the transition between SB and
UB. Linear analysis of the VS time-averaged velocity profiles reveals a region of
absolute instability in the vicinity of the cylinder associated with large velocity deficit,
followed by a region of convective instability, which is in turn followed by a stable
region. The frequency obtained from Koch’s criterion is in good agreement with the
shedding frequency of the fully developed VS. However, this analysis does not reveal
the mechanism that sets the global shedding frequency of the VS regime because
the basic state is obtained from the VS regime itself. The mechanism responsible for
VS shedding is sought by investigating the stability behaviour of velocity profiles
in the UB regime as S is decreased towards the critical value which defines the
transition from the UB to the VS. The results show that the near wake consists
of a region of absolute instability sandwiched between two convectively unstable
regions. The frequency of the VS appears to be predicted well by the selection criteria
given in Pier & Huerre (2001) and Pier (2002), suggesting that the ‘wave-maker’
mechanism proposed in Pier & Huerre (2001) in the context of deep wakes remains
valid for shallow wakes. The amplitude spectra produced by the nonlinear model
are characterized by a narrow band of large-amplitude frequencies and a wide band
of small-amplitude frequencies. Weakly nonlinear analysis indicates that the small
amplitude frequencies are due to secondary instabilities. Both the UB and VS regimes
are found to be insensitive to random forcing at the inflow boundary. The insensitivity
to random noise is consistent with the linear results which show that the UB and
VS flows contain regions of absolute instabilities in the near wake where the velocity
deficit is large.
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1. Introduction
Turbulent shallow flows such as jets, mixing layers and wakes are common in nature.

Such flows are observed in rivers, estuaries, compound and composite channels, and
oceans as well as in the atmosphere. In this paper we analyse shallow wakes, that
is, flows behind obstacles (such as islands and headlands) in a shallow environment.
Shallow flow models are used where the transverse length scale of the flow is much
larger than the vertical length scale. In this case the system of Navier–Stokes equations
is integrated with respect to the vertical length scale. Using the hydrostatic approxim-
ation for the pressure one then obtains a system of shallow water equations which is
widely used in the analysis of such flows. Field, laboratory and numerical data show
the existence of quasi-two-dimensional coherent structures in shallow flows. In a recent
paper, Jirka (2001) formulated four basic approaches which are used to study coherent
structures in shallow flows: field data, experimental analysis, numerical experiments
and stability analysis. Aerial photographs and satellite images show different flow
patterns behind islands and around mountains (Wolanski, Imberger & Heron 1984;
Ingram & Chu 1987). Photograph number 173 in Van Dyke (1982) shows the
development of shallow wakes in the lee of the leaking tanker Argo Merchant. Despite
the fact that the Reynolds number of the flow is quite high, the flow pattern closely
resembles the well-known von Kármán vortex street pattern small Reynolds numbers.

Shallow mixing layers were studied experimentally by Chu & Babarutsi (1988),
Uijttewaal & Booij (2000), van Prooijen & Uijttewaal (2002). Turbulent shallow
wakes are analysed in the experiments of Chen & Jirka (1995), Balachandar, Tachie &
Chu (1999), Balachandar, Ramachandran & Tachie (2000), Tachie & Balachandar
(2001). It is found in these studies that the shallowness of fluid layer plays an
important role in the development of the wake. In particular, the wake momentum
defect is reduced by the bed friction force, which will eventually nullify the wake in
the far region. Different flow patterns observed in the experiments by Chen & Jirka
(1995) were classified using the stability parameter S = cf D/h, where cf is the friction
coefficient, D is the characteristic length scale of the obstacle (in the experiments of
Chen & Jirka (1995) D was the diameter of a cylinder or the width of a plate) and
h is water depth. The stability parameter S was introduced earlier, in the paper by
Ingram & Chu (1987). The structures observed for small S (of order 0.2 or less)
closely resemble the classical vortex street (VS) pattern known for flows in deep water
for small Reynolds numbers. For larger S (approximately from 0.2 to 0.5) the wake
consists of two counter-rotating eddies which oscillate in the cross-stream direction
followed by a sinuous tail. Such a flow pattern is referred to as an unsteady bubble
(UB). Finally, if the stability parameter S is larger than about 0.6, the wake consists of
two non-oscillatory counter-rotating eddies with no visible oscillations downstream.
This flow pattern is referred to as steady bubble (SB).

Coherent structures that are observed in shallow wakes are believed to appear
as a result of flow instability. Methods of hydrodynamic stability theory were used
by Chu, Wu & Khayat (1983, 1991), Grubis̆ic̆, Smith & Schär (1995), Chen &
Jirka (1997, 1998), Ghidaoui & Kolyshkin (1999), van Prooijen & Uijttewaal (2002),
Kolyshkin & Ghidaoui (2002, 2003), Socolofsky, von Carmer & Jirka (2003) in an
attempt to describe the behaviour of flows in shallow water. Several conclusions can
be drawn from the results of stability analysis. First, the validity of the rigid-lid
assumption is assessed. It is shown in Ghidaoui & Kolyshkin (1999) that the error in
the determination of the critical values of the stability parameter S is about 10–15 % if
the Froude number of the flow (based on water depth) does not exceed 0.6. The use of
the rigid-lid assumption allows one to simplify the shallow water equations and reduce
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them to one equation for the stream function, as is usually done in two-dimensional
hydrodynamics. Second, different patterns observed in shallow wakes (vortex street,
unsteady bubble, steady bubble) are classified in Chen & Jirka (1997) using the
concepts of stable, convectively unstable and absolutely unstable flows. Reasonable
agreement is found between theoretical predictions from the linear stability analysis
and experimental data in Chen & Jirka (1997) and Socolofsky et al. (2003) for shallow
wakes and in van Prooijen & Uijttewaal (2002) for shallow mixing layers. Third, it
is shown in Kolyshkin & Ghidaoui (2003) that if the stability parameter S is slightly
below the critical value then the evolution of the most unstable mode is governed by
a complex Ginzburg–Landau equation. Satisfactory agreement is found between the
results of nonlinear simulation in Grubis̆ic̆ et al. (1995) and the Ginzburg–Landau
model in terms of the wake saturation amplitude.

Numerical investigation of turbulent shallow wakes was performed by Lloyd &
Stansby (1997a, b), Stansby & Lloyd (2001) and Stansby (2003). Lloyd & Stansby
(1997a, b) investigated steady ambient flows around conical islands of small slope both
experimentally and numerically. Oscillatory ambient flows around islands of small
slope were analysed by Stansby & Lloyd (2001). Stansby (2003) describes a mixing-
length model for shallow turbulent wakes where the vertical length scale is assumed
to be proportional to the horizontal length scale. The coefficient of proportionality is
found from the comparison with experimental data.

Previous studies of shallow wake flows indicate that a more detailed picture of
the flow can be obtained if several methods of analysis are combined (for example,
linear stability analysis and experimental modelling as in Chen & Jirka (1997),
numerical modelling and experimental analysis as in Lloyd & Stansby (1997a, b).
In the present paper we analyse shallow wake flows using the methods of linear
and weakly nonlinear theory as well as numerical integration of full two-dimensional
shallow water equations.

2. Governing equations
The problem under investigation consists of a free-surface water flow around an is-

land. The mass and momentum equations for an incompressible homogeneous viscous
fluid flow such as that around islands are (Schlichting 1979; Hinze 1987; Pope 2000)
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where g is the gravitational acceleration; ρ is the density of the fluid (water); t is time;
κ = 1, 2 and α = 1, 2 with 1 indicating the streamwise direction and 2 indicating the
cross-stream direction; (xα, z) = (x1, x2, z) are the streamwise, cross-stream and vertical
coordinates, respectively; (uα, w) = (u1, u2, w) are the velocities in directions (x1, x2, z),
respectively; p is the pressure; and ν is the kinematic viscosity of the fluid (water).
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where φ̄ is the filtered (resolvable) part of φ; and G is a function which is a
characteristic of the filter. Applying the filtering operation to (2.1), (2.2) and (2.3)
gives (Pope 2000)
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∂(ūκ ūα −uκuα)

∂xκ

+
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The last terms on the right-hand side of (2.5) and (2.6) represent the momentum
exchange between the resolved and unresolved scales of motion.

The use of linear and nonlinear analyses to investigate the emergence and evolution
of large-scale coherent structures in the wake of islands is of a particular interest in
this study. The horizontal and vertical length and velocity scales of these coherent
structures are given by (LX, U ) and (LZ, W ), respectively. In the vicinity of the island,
LX is of a similar order of magnitude to the island diameter D. Further downstream,
the coherent structures may undergo pairing as well as spreading with the result being
that LX may exceed D. Therefore, LX � O(D), where O is the order of magnitude
operator as defined in Pedlosky (1987). The vertical length scale, LZ , of the coherent
structures is constrained by the water depth, where LZ is generally much smaller than
D and LX (i.e. LZ/LX � 1). Very far from the island, however, the coherent structures
are annihilated by the bottom friction.

Considering flows with LZ/LX � 1, the vertical momentum equation reduces to a
balance between gravity and pressure gradient (i.e. hydrostatic pressure distribution).
Using the hydrostatic distribution and integrating (2.4) and (2.5) with respect to water
depth, h, gives the following shallow water equations:
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where the hat denotes the depth-averaging operator; δκα = 1 when κ = α and 0
otherwise; b(xα) is the vertical distance from an arbitrary datum defined by z = 0
to the bed of the channel, river, lake or ocean; S0α

= ∂b/∂xα are the slopes of the
flow bed along x1 and x2; and τ̄bα

= −µ∂ūα/∂z at z = b are the shear stresses at the
bed of the flow along x1 and x2. Note that the shallow flows being investigated are
characterized by small values of surface water and bed slopes. Therefore, the filter

function G is separable, leading to ˆ̄φ =
¯̂
φ (Hinterberger, Frohlich & Rodi 2003). This

result has been used in the derivation of (2.7) and (2.8). These equations are not

closed because τ̄bα
and ûκuα are unknown. The turbulent stresses can be estimated

from the following turbulence closure model:
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where νe is eddy viscosity. Although there is no theoretical foundation for applying
the Smagrorinsky model to two-dimensional flows, the adoption of this model outside
its domain of applicability has generally led to encouraging results. For example, the
model adopted in this paper has been successfully applied by Zhou (2004) to channel
flows as well as conical-island shallow wake flows. In addition, the Princeton Ocean
Model (POM) uses the Smagorinsky relation to estimate the horizontal component of
the turbulent diffusion (Mellor 2004). The POM model has been successfully applied
to a wide range of problems in ocean circulations (e.g. Oey, Ezer & Lee 2005). It is
worthwhile noting that the two-dimensional version of the Smagorinsky model belongs
to the general class of mixing-length models (Pope 2000), where the mixing length is
related to the grid size by the van Driest formula: lm =

√
	x	y[1 − exp(−r+/A)]/C2

s ,
where Cs is the Smagorinsky constant; r+ = u∗(r −D/2)/ν is the dimensionless radial
distance from the island; D/2 is the island diameter and u∗ is the shear velocity.
The van Driest formula ensures that the eddy viscosity becomes zero in the viscous
sublayer.

The shear stresses at the bed of the flow are modelled using the following quadratic
friction law (Schlichting 1979; Hinze 1987; Pope 2000):

τbα
= 1

2
ρcf ūα

√
ūκ ūκ , (2.10)

where cf is the friction coefficient. The 1/2 in (2.10) is adopted for consistency with
the work of Chen & Jirka (1997). Other papers and textbooks may drop the 1/2 and,
therefore, their friction coefficient would be half the one used in this paper. Hence,
care is needed when one is comparing results from different authors. The friction
coefficient for the case of a smooth bed is given by the semi-empirical quadratic
friction law (Schlichting 1979; Hinze 1987; Pope 2000):

1
√

cf

= −4 log

(
1.25

4Re
√

cf

)
, (2.11)

where Re= ULZ/ν is the Reynolds number and ν is the dynamic viscosity of the fluid.
The resistance coefficient of a rough surface depends on both Re and the relative
roughness coefficient ks of the surface (Schlichting 1979; Hinze 1987; Pope 2000) and
can be obtained by Colebrook–White formula:

cf =
1

16

[
log

(
ks/h

3.71
+

5.74

Re0.9

)]−2

. (2.12)

The resistance coefficient for a laminar flow varies as the inverse of the Reynolds
number.

3. Numerical method
The system (2.7), (2.8) and (2.10) is solved using a conservative finite volume on

irregular grids, where the algorithm for the mass and momentum fluxes at the control
surface of the finite volume is obtained from the solution of the Bhatnagar–Gross–
Krook (BGK) Boltzmann equation. The scheme is explicit and second order in both
time and space. The spatial variation of flow velocity and water depth within a cell
is obtained using a second-order nonlinear limiter. A summary of the BGK scheme
is provided in this section. Detailed derivation and an in-depth analysis of the BGK
model for shallow water flows can be found in Ghidaoui et al. (2001) and Liang et al.
(2005).
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The BGK scheme has its roots in the idea that the shallow water equations are
obtainable as moments of a Boltzmann-like equation. In particular, the BGK equation
for shallow flows is (Ghidaoui et al. 2001; Xu 2002)

∂f

∂t
+ cα

∂f

∂xα

+
(
S0α

− cf
¯̂uα

√
¯̂uκ

¯̂uκ/h̄
) ∂f

∂cα

=
fe − f

tc
(3.1)

where

fe(xα, cα, t) =
1

πg
exp

[
− (cα − vα)(cα − vα)

gh̄

]
(3.2)

and cα is random particle speed along xα , f is the distribution function of cα , and
tc is the relaxation time to be defined later in this section. The distribution function
satisfies the following relations:
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The zeroth and first moments of (3.1) with respect to cα are
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Note that system (3.4)–(3.5) is identical to (2.7) and (2.8) if tcgh̄ = ν + (¯̂uκ
¯̂uα − ûκuα)/

∂ ¯̂uα/∂xκ . This connection between the BGK model and the shallow water equation
is exploited to formulate a numerical scheme for (2.7) and (2.8) on the basis of the
BGK equation.

Let Ω be the flow domain. This flow domain is divided into I × J cells (control
volumes) of arbritrary shapes, Ωij with i = 1 . . . I and j = 1 . . . J , such that Ω = ∪Ωij .
Here i and j denote the spatial index along the x1 and x2 coordinates, respectively.
The time domain is divided into N equal intervals. The length of each time interval
is 	t and the kth time level denotes t = k	t . Integration of (3.4)–(3.5) over Ωij from
k to k + 1 gives
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and where n = (dy i − dx j )/dl is the local unit outward vector normal to ∂Ωij ;
t = (dx i + dy j )/dl is the unit tangent vector to the surface when going around the

boundary in the counter-clockwise direction, and dl =
√

dx2 + dy2.
An algorithm for the unknown flux term on the right-hand side of (3.6) is required.

Traditional approaches use upwind schemes such as the Riemann solution to estimate
the flux associated with F and central differencing to estimate the flux associated with
Fτ . The BGK scheme uses the connection between the Boltzmann distribution and
the Boltzmann equation to determine this flux term. In particular, note that F + Ftc

represent the second and third rows of (3.3). The relation between F + Ftc and f

means that one can develop an algorithm for F + Ftc by approximating f using the
BGK equation and inserting the result into the second and third rows of (3.3). A
second-order solution in time and space of (3.1) at a cell boundary is (Ghidaoui et al.
2001)

f (t, xα) = γ1f
k
e (xα) + γ2f

k
e (x+

α ) + γ3f
k
e (x−

α ), (3.7)

where t ∈ [k	t, (k + 1)	t]; xα ∈ ∂Ωij ; x+
α tends to xα from the outside of Ωij ; x−

α

tends to xα ∈ ∂Ωij from the inside of Ωij ; and (γ1, γ1, γ2) are known functions of time
and particle speeds (Ghidaoui et al. 2001). The algorithm for the net flux from cell
Ωij is
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−∞

 1
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k
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k
e (x+
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α )
)
dcx1

dcx2
. (3.8)

The integration in (3.8) is carried out analytically because all the moments of the
Gaussian distribution, fe, are known. The explicit form of the net flux is given in the
Appendix.

The current BGK model has been previously tested for a wide range of shallow
water flows. For example, Ghidaoui et al. (2001) demonstrated the accuracy and
efficiency of the BGK scheme by applying it to (i) strong shock waves, (ii) extreme
expansion waves, (iii) a combination of strong shock waves and extreme expansion
waves and (iv) one- and two-dimensional dam break problems. In addition, Xu (2002)
developed a well-balanced BGK scheme for the shallow water equations with source
terms. Moreover, Liang et al. (2005) showed that BGK model couples both wave and
diffusion very well without operator splitting. It should also be noted that Boltzmann-
based schemes have been developed and applied to a multitude of hydrodynamic
problems such as shock waves in compressible flows (e.g. Reitz 1981; Xu 2001),
multicomponent and multiphase flows (e.g. Gunstenson et al. 1991; Xu 1997a), flows
in complex geometries (e.g. Rothman 1988; Chen & Doolen 1998), turbulent flows
(e.g. Chen, Chen & Matthaeus 1992; Zhou 2004), low Mach number flows (e.g. Su,
Xu & Ghidaoui 1999), and heat transfer and reaction diffusion flows (e.g. Xu 1997b).

Figure 1 shows a typical grid system, where the circle in the middle represents
the island and the dimensionless distances are x = x1/LX and y = x2/LX . The no-slip
condition is used at the island and channel walls. The discharge is specified at the
inflow boundary, while the water depth is specified at the downstream boundary.
Several convergence tests are performed. As an example, the results of the simulation
of the unsteady bubble case (CY43, see Chen & Jirka 1995) for different mesh sizes,
namely, 240 × 75, 320 × 100, 400 × 125 and 480 × 150 are shown in table 1. The
instantaneous longitudinal velocity ¯̂u1 is calculated at different locations x1/D along
the centreline at t = 1000 s. The results for different mesh sizes are compared to those
of the finest mesh (480 × 150). No noticeable changes in the results were observed by
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Figure 1. Computational grid.

x1/D 480 × 150 240 × 74 % error

1.0 0.161253 0.162690 0.89
2.0 0.158243 0.156699 −0.98
3.0 0.163090 0.162768 −0.20

x1/D 480 × 150 320 × 100 % error

1.0 0.161253 0.163035 1.11
2.0 0.158243 0.157741 −0.32
3.0 0.163090 0.162857 −0.14

x1/D 480 × 150 400 × 125 % error

1.0 0.161253 0.162696 0.90
2.0 0.158243 0.158042 −0.13
3.0 0.163090 0.163061 −0.02

Table 1. Convergence test results.

further mesh refinement beyond (480 × 150). In general, the percentage error, which
measures the difference between the results obtained from a coarse mesh and the
results obtained by the finest mesh, show that the error is small and that this error
becomes smaller as the number of grid points increases. Note that the error with a
mesh size of 320 × 100 is of order 1%. Therefore, unless stated otherwise, this mesh
is used for the nonlinear calculations presented in the paper. Figure 2 shows the
convergence of the numerical solution as the number of grid points increases. The
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Figure 2. Convergence of the BGK scheme at two different locations downstream
of the island.

slope of these curves is around 2, confirming that the overall order of the scheme is
close to 2.

4. Range of validity of the depth-averaged equations
This section assesses the ability of the depth-averaged shallow water model to

describe shallow wake flows. This is accomplished by applying the model to test rigs
for which there are data available. The velocity profiles, wake size, shedding frequency
and centreline velocity are compared.

Figure 3 shows the computed and measured time-averaged streamwise velocity
profiles at different stations downstream of the island. The measured profiles are
obtained from Socolofsky et al. (2003). The time-averaged profiles are calculated by
the formula

Uav(X1, X2) =
1

T0

∫ Tf

Ts

U1(X1, X2, T ) dT , (4.1)

where Ts is the starting time of the averaging (which is assumed to be large enough to
ensure that the transient time is smaller than Ts), Tf is the final time and T0 = Tf − Ts .
The values of Ts and Tf are 750 s and 4000 s, respectively. The magnitude of the
return velocity and the gradient of the velocity deficit, which are important for flow
stability, are represented well by the model. However, the magnitude of the computed
velocity at the shoulders of the cylinder are slightly larger than the measured values.
This is probably due to the fact that while the model gives depth-averaged profiles,
the measured profiles are sampled at a particular water depth. There are no available
measured depth-averaged profiles for shallow wakes.

Figure 4 shows the computed and measured Strouhal number St as a function
of the parameter S, where St = f D/U and f is the frequency of wake oscillation.
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The computed and measured shedding frequencies are in reasonable agreement over a
wide range of the stability parameter. This suggests that mechanism of flow instability
responsible for wake oscillations and eddy shedding is approximated well by the
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(b) half-width.

nonlinear shallow water model. In addition, the fact that the shallow water model
provides a reasonable estimate for the shedding frequency of eddies from the lee of the
island is important since the time of trapping of contaminants and/or sediments by the
eddies in the wake of an island is a critical parameter for water quality applications.

For a more detailed investigation of the model, the computed mean centreline velo-
city and wake half-width are compared to the unsteady bubble data in Socolofsky et al.
(2003). The computed and measured data are shown in figure 5. The magnitude of the
maximum return velocity and bubble half-width are in good agreement with the data,
but the computed distance from the island to the point of maximum return velocity
and the distance from the island to the point of zero return velocity (bubble length)
are 30 % shorter than the measured ones. The values of the return velocity and wake
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Experiment U (cm s−1) H (cm) D (cm) ReD cf S Flow type observed

CY14 6.7 6.0 140 94000 0.0068 0.16 VS
CY43 14.3 2.1 140 200000 0.0074 0.49 UB
CY57 6.9 1.7 140 97000 0.0096 0.79 SB

Table 2. Flow conditions for the three test cases.

half-width are important parameters in the quasi-parallel linear stability analysis per-
formed by Chen & Jirka (1997) and others. Therefore, the agreement between model
and data in terms of the magnitudes of return velocity and wake half-width means
that linear analysis in which the base flow profiles derived from the depth-averaged
models are useful for explaining the transition from one wake regime to another.
However, these analyses may not produce the correct position of the instability.

The time series and corresponding spectra calculated for S = 0.79, S =0.49 and
S = 0.16 at different spatial locations for the longitudinal and transverse velocity
components are now analysed. The flow conditions for the three tests are given in
table 2. The experiments in Chen & Jirka (1995) show that S = 0.79, S = 0.49 and
S = 0.16 correspond to SB, UB and VS, respectively. The aim here is to investigate
how well the shallow water model reproduces these three regimes.

The temporal velocity history for S = 0.79 is shown in figure 6. As can be seen from
the figure, the velocity reaches a constant value (after a short-time transient), showing
that the flow belongs to the stable SB regime. Further numerical experimentation
shows that the transition between SB and UB occurs at bed friction number of
about 0.55. The amplitude spectra for S = 0.49 are shown in figure 7. The presence
of coherent structures in the flow at the island is clearly illustrated by the presence
of a narrow band of dominant frequencies around the Strouhal number St = 0.35.

The measured and computed bubble length for the SB case are now compared.
Ideally, this comparison should be made on the basis of data obtained from velocity
measurements. Unfortunately, there are no available velocity-based bubble length
data for the SB regime. The data in Chen & Jirka (1995) estimate the bubble length
on the basis of dye and not velocity spread. Balachandar et al. (2000) reports that
concentration spread is 1.5 to 2.5 times larger than the velocity spread in the near
wake and 1.3 to 1.6 larger in the far wake. Therefore, the additional spread in the data
of Chen & Jirka (1995) needs to be estimated prior to carrying out the data/model
comparison. The velocity-based bubble length obtained from the data of Socolofsky
et al. (2003) for S = 0.39 is approximately 1.3D. On the other hand, the dye-based
bubble length obtained from the data of Chen & Jirka (1995) for the same S value is
approximately 1.8D. Therefore, it appears that the dye spread is about 38 % higher
than velocity spread. Comparison between the model and data shows that the depth-
averaged model produces poor SB lengths even when the difference in spread between
the dye and velocity is taken into account. For example, the model underestimates
the bubble length by 60 % for the case with S = 0.62. This discrepancy between
model and data shows the limitation of the depth-averaged shallow water model as S

increases beyond the UB regime. The reduced accuracy of the depth-averaged model
with S is also reported in Lloyd & Stansby (1997a, b). Lloyd & Stansby (1997a) note
‘. . . increase in S resulted in less-accurate [depth-averaged] model simulations . . . The
velocity field predicted by the depth-averaged model bears little similarity to that
observed in the laboratory’.
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Figure 6. The time series of velocity component at locations: x = 1.2D, y = 0.1D for
S =0.79. (a) longitudinal velocity, (b) transverse velocity.

The loss of accuracy of the depth-averaged model as S increases is understandable
given that the island-generated two-dimensional large-scale turbulence becomes
suppressed when S grows, while the bed-generated small-scale three-dimensional
turbulence becomes stronger. Indeed, the shallow mixing layer experiments in
Uijttewall & Booij (2000) and the grid turbulence experiments in shallow flows in
Uijttewall & Jirka (2003) show that increasing S by, say, decreasing the water depth
destroys the coherence in the large-scale structures and suppresses the enstrophy
cascade mechanism. They found that energy cascade for large S follows closely the
−5/3 rule, indicative of the three-dimensional nature of the turbulent field. Observed
flow features such as the increase in turbulent stresses in the vicinity of bluff bodies,
the departure of the vertical profile of velocity from the log-law in the near-wake
region, and the strong three-dimensional characteristics of the turbulent field when S

increases are not captured by depth-averaged shallow flow models. Recall that depth-
averaged models neglect the momentum dispersion associated with the variation of
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Figure 7. Amplitude spectra of longitudinal velocity for S = 0.49. (a) x = 1.06D,
y = 0.02D; (b) x = 1.73D, y = 0.02D.

velocity with respect to water depth and employ simple quasi-steady wall friction laws
to represent bed friction. The three-dimensional results in Stansby (2003) show that
the distribution and magnitude of the bottom friction coefficient in the near-wake
region is far from constant and becomes large in the vicinity of a bluff body. The
value of the friction coefficient in the near-wake region can be much larger than the
quasi-steady values used in shallow flow models. In addition, laboratory data reported
in Balachandar & Tachie (2001) show that (i) the vertical profiles of the streamwise
velocity in the near-wake do not follow the log-law and contain inflection points
and (ii) the turbulence intensity increases in the near-wake region. It must also be
emphasized that depth-averaged models are also expected to fail when S becomes so
small in such a way that the flow can no longer be treated as shallow. As S becomes
very small, the vortex shedding and bending becomes important again and the VS
regime would break down into three-dimensional flow. The transiton from shallow to
deep and the value of S at which this transition occurs has not yet been investigated.
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Figure 8. The vorticity contours for the case with S = 0.17.

The results of this section show that the depth-averaged model becomes unreliable
as S increases beyond the S value close to the transition between SB and UB regimes.
It is noted that Lloyd & Stansby (1997a) found that the depth-averaged shallow
model became less accurate than the three-dimensional model when S exceeds 0.3
for the case of conical islands. Similarly, the tests conducted here indicate that the
depth-averaged model became inaccurate when S exceeds about 0.55 for the case of
cylindrical islands. As a result, the remainder of the paper is restricted to S values in
the range [0.17, 0.55].

5. Computed wake patterns
Figures 8–11 show the vorticity contours of shallow wakes in the lee of cylindrical

bluff bodies for values of the stability parameter S ranging from 0.17 to 0.51. Figure 8
shows that when S =0.17, the cylinder wake is characterized by a pronounced vortex
shedding mechanism, leading to the establishment of a vortex street pattern. The
processes of streamline oscillation at the shear layer in the vicinity of the cylinder
followed by vortex roll-up and subsequent pairing is clear in these figures. Note that
although the Reynolds number is very large (≈ 105), the shallow wake shown in
figure 8 is similar in appearance to the classical von Kármán vortex street found
in unbounded plane wakes for small Reynolds number (≈ 102), highlighting that
Reynolds number is not the main control parameter in shallow wake flows. The
computed structure of the wake flow in figure 8 is consistent with that observed
by Chen & Jirka (1995). The vortices in the wake are highly organized and the
flow structure is coherent. The vortex shedding nature of the shallow wake and its
associated coherent structure at low values of S is the end product of the absolute
instability found by Chen & Jirka (1997).

Further investigation of the unsteady bubble regime is performed for S = 0.51 and
the near-wake details are plotted in figure 11. It is found that the mean position of
the mixing layers at both sides of the cylinder is steady, indicating that the location
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Figure 9. The vorticity contours for the case with S = 0.24.
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Figure 10. The vorticity contours for the case with S = 0.35.

of the boundary layer separation point on each side of the bluff body is fixed.
Coherent structures exist within these mixing layers as can be seen from fine grid
results (figure 11). The two mixing layers converge towards the centreline and merge
with one another about 2 island diameters downstream of the aft of the cylinder. The
unsteady vortex at the point where the two mixing layers merge triggers a convective-
type instability and leads to a wake flapping similar to that found in figure 9 and
figure 10. The backflow (reverse flow) within the attached bubble can also be seen
clearly in figure 11.
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Figure 11. Near-wake details for the case with S =0.51.

Figures 9 and 10 show the cylinder wake for S = 0.24 and 0.35. An unsteady
bubble, characterized by a re-circulating flow region, emerges in the near wake of the
cylinder. Downstream of the unsteady bubbles, a sinuous wake is observed. Although
not shown here, a time sequence of the sinuous wake reveals that the far wake flaps
continuously with respect to the island centreline. The flapping sinuous wake is likely
to be the result of the convective instability described in Chen & Jirka (1997). The
amplitude of the oscillation of the bubbles and the sinuous wake decreases as S

increased from 0.24 to 0.35. The computed structure of the wake flow in figures 8–10
is consistent with that observed by Chen & Jirka (1995). However, the amplitude of
the sinuous wake, especially for S =0.24, is more pronounced than that in Chen &
Jirka (1995).

6. Absolute instability and the frequency selection criteria
There is ample evidence connecting the global VS frequency and the curve of local

absolute instability as function of the streamwise distance for the case of deep flows
(e.g. see Pier 2002 and the references given in it). In the context of shallow wakes,
Chen & Jirka (1997) used the concepts of convective and absolute instabilities to
classify different flow patterns observed in the experiments. The flow is said to be
convectively unstable if a perturbation at any fixed location in the laboratory frame
decays with time because the localized perturbation travels away and eventually
leaves the flow region. The flow is said to be absolutely unstable if perturbations grow
in time at any fixed location in the laboratory frame. Chen & Jirka (1997) argued
that the transition from steady bubble to unsteady bubble represents the transition
from stable to convectively unstable wake. Similarly, the transition from unsteady
bubble to vortex street corresponds to the transition from convectively unstable wake
to absolutely unstable wake. Schär & Smith (1993) compared the global VS shedding
frequency in shallow wakes for the case of zero bottom friction (i.e. S = 0) to the
frequency obtained from the saddle point criterion as well as the frequency obtained
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from the maximum growth criterion. The frequencies obtained from the two selection
criteria differ from the shedding frequency by about 30 %.

This section investigates the relation between the local absolute instability and the
global VS frequency for the case of shallow wakes. Several criteria for deep wakes are
proposed in the literature in an attempt to link the global frequency of oscillations with
local absolute stability characteristics (Hannemann & Oertel Jr. 1989; Hammond &
Redekopp 1997; Huerre 2000). The criteria in Koch (1985) as well as that in Pier &
Huerre (2001) and Pier (2002) are used in this study.

6.1. Linear model

Ideally, base flows for linear analysis should be derived from the governing equation.
This is not possible for shallow wake flows because an analytical solution for the
shallow water equations around a cylinder is not available. Previous stability studies
of shallow flows (Chen & Jirka 1997; Kolyshkin & Ghidaoui 2003; Socolofsky et al.
2003) use the profile used by Monkewitz (1988) for the analysis of deep-wake flows
behind circular cylinders for small Reynolds numbers (up to Re =48.5). It is important
to note that although the Monkewitz profile has the salient features of shallow wakes,
this profile does not satisfy the shallow water equations.

Here, the base state is obtained by time-averaging of the data obtained from the
nonlinear model. The averaging process is given by (4.1). Two base flows considered
are obtained from VS and UB data. A typical base flow profile is given in figure 3. The
computed profiles differ from that in Monkewitz (1988) by the existence of additional
inflection points and by a local flow acceleration in the region between the shear
layer and the ambient velocity. These features are also found in the experiments of
Socolofsky et al. (2003) (see figure 3). The additional inflection points and the flow
acceleration at either side of the cylinder are due to the boundary layer that forms at
the cylinder wall due to the enforcement of the no-slip condition at the perimeter of
the cylinder.

A widely used assumption in the linear stability analysis of shallow shear flows is
the rigid-lid assumption. This assumption consists of replacing the gravity-driven free-
surface flow by an equivalent pressure-driven flow between two parallel horizontal
plates with the top plate being inviscid (acting like a lid) and the bottom plate
having the same cf as the original channel. Field data show that for typical shallow
turbulent wakes behind islands the corresponding Froude number of the flow based
on the ambient velocity and water depth is about 0.1–0.2 while in the experiments of
Chen & Jirka (1995) the Froude number is in the range 0.04 to 0.71. Dimensional
analysis shows that the mass storage term in (2.7) (i.e. ∂h̄/∂t) is of order WLX/ULZ ,
while the other terms are of order one. Since the time scale is LX/U , we obtain
WLX/ULZ =A0/LZ , where A0 is the scale of the wave amplitude. The analysis of
Ponce & Simons (1977) and Singh (1996) shows that the amplitude A0 tends to zero
as the Froude number FrH (based on water depth) tends to zero. Some estimates
of the influence of the Froude number on the stability boundary of transverse shear
flows in shallow water flows are presented in Falqués & Iranzo (1994), Ghidaoui &
Kolyshkin (1999) and Kolyshkin & Ghidaoui (2002). Falqués & Iranzo (1994)
investigated the stability of mean alongshore current in nearshore flows. They found
that the error in the growth rates of disturbances due to the rigid-lid assumption
(i.e. neglecting (A0/LZ)(∂h/∂t)) for plane sloping beaches is 12 % when the Froude
number is 0.63 and 28 % when the Froude number is 0.89. Ghidaoui & Kolyshkin
(1999) and Kolyshkin & Ghidaoui (2002) studied the linear stability of transverse
shear flows in compound and composite open channels and found that the rigid-lid
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assumption works well for weak shear flows and/or small Froude numbers. Thus
in general, one can use the rigid-lid assumption within 10 % error in the region
0 < FrH < 0.7 for the calculation of the critical values of the stability parameter S

and the rigid-lid assumption is adopted in the linear stability analysis of the paper.
This assumption is not used in the nonlinear part.

The rigid-lid assumption entails replacing the gravity-driven open channel by a
pressure-driven uniform flow between two parallel plates, the vertical distance between
which is h̄. Therefore, (2.7) and (2.8) become

∂ ¯̂uα

∂xα

= 0, (6.1)

∂ ¯̂uα

∂t
+ ¯̂uκ

∂ ¯̂uα

∂xκ

= − ∂p̄

∂xα

− 1

2h̄
cf ūα

√
ūκ ūκ +

∂

∂xκ

(
(ν + νev)

∂ ¯̂uα

∂xκ

)
, (6.2)

where p̄ is the pressure that drives the flow such that ∂p̄/∂xα = ρg∂(h̄ + b)/∂xα (i.e.
the pressure gradient is equivalent to the sum of the hydrostatic pressure and driving
force due to the slope of the bed) and νev is the eddy viscosity.

For simplicity, the following notation is adopted in the remainder of the paper:
(u, v) = (¯̂u1/U, ¯̂u2/U ), where U is the ambient velocity. Let (u0(y), 0, p0(x)) define the
base flow and consider a perturbed solution to equations (6.1) and (6.2) in the form

u = u0(y) + u′(y) e−λt∗+ikx, (6.3)

v = v′(y) e−λt∗+ikx, (6.4)

p = p0(x) + p′(y) e−λt∗+ikx, (6.5)

where u′, v′ and p′ are the complex amplitudes of the normal perturbations, t∗ =Ut/

LX is the dimensionless time, k is the wavenumber and λ= λr + iλi is a complex
eigenvalue. Substituting (6.3)–(6.5) into equations (6.1) and (6.2), linearizing the
resulting equations in the neighbourhood of the base flow and eliminating the pressure
p′ we obtain the following modified Orr–Sommerfeld equation for the function v′(y):

1

ReT

(
d4v′

dy4
− 2k2 d2v′

dy2
+ k4v′

)
+ (iku0 + Sbu0)

d2v′

dy2
+ Sb

du0

dy

dv′

dy

− v′
(

ik
d2u0

dy2
+ ik3u0 +

Sb

2
k2u0

)
− λ

(
d2v′

dy2
− k2v′

)
= 0, (6.6)

where Sb = cf /h= cf LX/H and ReT = ULX/νev is the local turbulent Reynolds
number based on the constant eddy viscosity νev . The turbulent viscosity is estimated
from the relation (see Fischer et al. 1979)

νev = 0.15
√

cf /2UH. (6.7)

The values of ReT are of order 103 − 104 for all cases considered. Calculations with
different values of ReT support the conclusion of Chen & Jirka (1997) that the
stability characteristics are insensitive to ReT once ReT > 1000. As mentioned before,
the terms proportional to 1/ReT are included for numerical stability: the inviscid
version of (6.6) is singular if the region of reverse flow is present since u0(y) = 0 at
some points of the flow. The boundary conditions for the function v′ are

v′(±∞) = 0,
dv′

dy
(±∞) = 0. (6.8)
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The problem (6.6)–(6.8) is an eigenvalue problem. The eigenvalues, λs = λrs + iλis ,
s = 1, 2, . . . , determine the linear stability of the base flow given by (u0(y), 0, p0(x)).
This base flow is said to be linearly stable if λrs > 0 for all s, and linearly unstable if
λrs < 0 for at least one value of s.

The linear stability problem (6.6)–(6.8) is solved by a pseudospectral collocation
method based on Chebyshev polynomials (the details of the numerical method are
given in Ghidaoui & Kolyshkin 1999). Essentially, the problem is reduced to the
following generalized eigenvalue problem:

(B − λC)ψ = 0, (6.9)

where

ψ = [a1, a2 . . . am, b1, b2 . . . bm, c1, c2 . . . cm]T .

where the superscript T denotes transpose. Equation (6.9) is solved by the IMSL
routine GVLCG (IMSL 1991). The current solution is more convenient than those
obtained by traditional collocation methods (Canuto et al. 1988) for two reasons.
First, in the present case the matrix C is not singular. Second, the definition of base
functions in terms of the Chebyshev polynomials, which satisfy the given boundary
conditions, considerably reduces the condition number of the matrices in this method
(Heinrichs 1989).

6.2. Results and discussion

The stability analysis of mean velocity profiles obtained from the nonlinear model
is performed in this section. It follows from (6.6) that the stability parameter Sb is
defined in terms of the wake half-width LX while the experimental patterns in Chen
& Jirka (1995) were classified using the S value (which is defined in terms of D). The
relation between the two parameters is S = SbD/LX . Since the nonlinear model allows
one to calculate LX for each position downstream, the link between the parameter S

reported in experiments of Chen & Jirka (1995) and the parameter Sb used in stability
calculations can be easily established.

The critical values, Sc, of the parameter Sb are calculated as follows. First, the set
of all points in the (k, S)-plane for which one eigenvalue satisfies the condition λr = 0
while all other eigenvalues have positive real parts is obtained (we denote this set by
Sb(k)). Second, the critical value, Sc, of the stability parameter Sb is defined as the
maximum, over all k, of the values Sb(k) of Sb:

Sc = max
k

Sb(k). (6.10)

In order to determine the boundary between a convectively and an absolutely
unstable wake the search for a saddle point is performed in the (k, λ)-domain (Huerre
2000). In this case both k and λ are assumed to be complex of the form k = kr + iki ,
λ= λr +iλi . The dividing line between convective and absolute instability is calculated
as follows. Assuming λr =0 we perform an eigenvalue search at a fixed downstream
station for different kr , ki and S in order to find a saddle point. The procedure is
repeated for different downstream stations. The results are presented in figure 12 for
the VS and UB cases. The horizontal dashed lines correspond to the experimental
values of the parameter S for the two cases.

Basic state–VS: Figure 12 shows that the flow is locally absolutely unstable in the
interval (0 � x1/D � xac = 0.37) for the VS case, where xac denotes the downstream
location at which the instability changes from absolute to convective. This pattern
of spatial distribution where the absolute instability occurs at the upstream end of
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Figure 12. The absolute instability boundary versus x1/D for S =0.79 (triangles), S = 0.49
(squares) and S = 0.16 (circles).

the flow followed by a convective instability arises in semi-infinite domains (Chomaz
2005). The Koch (1985) criterion where the global frequency is determined by the
local absolute frequency at the downstream station xac, is used in this case. The value
of the Strouhal number obtained from the dominant frequency of the VS regime
is Stn = 0.217. The value of St at xca obtained from Koch’s criterion is 0.208. The
good agreement between the frequency obtained from the linear analysis of the basic
state obtained from the VS regime and the nonlinear frequency has also been found
in Pier (2002), but for the case where St was evaluated at the point of transition
from convective to absolute instability (i.e. at xca). The value of St at xca cannot be
obtained here since the flow appears to be absolutely unstable next to the cylinder
for the VS case.

The good agreement between the St obtained from Koch’s criterion and the St
obtained from the nonlinear code is probably due to the fact that the basic state is
determined from a time average of the VS data. That is, the instability of a basic
state obtained by averaging in time VS data does not describe a transition to another
regime; instead, it shows that the non-oscillatory time-mean basic state for S =0.16 is
not observable and the flow reverts back to the VS street from which the basic state
is derived. Therefore, the close agreement indicates that the stability analysis of mean
base flows obtained by averaging the VS data is able to rediscover the dynamics of
the very flow that the basic state is obtained from. However, this approach cannot
explain the mechanism responsible for the establishment of the VS regime. It may be
tempting to argue that the good agreement between the shedding frequency obtained
from the linear and nonlinear analysis may at least be used to save computational
time if one estimates the shedding frequency by a linear model in lieu of a nonlinear
model. Unfortunately, we find that the computational time and effort required to
solve the linear model and determine the absolute instability curve is comparable to
that for solving the nonlinear model.
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Figure 13. The advective instability boundary versus x1/D for S =0.79 (diamonds),
S = 0.49 (circles) and S = 0.16 (squares).

Basic State–UB but near the transition to VS: The above results show that one
cannot expect to understand the onset of a VS regime by perturbing a state derived
from the VS regime itself. Its understanding requires the perturbation of a basic state
that has the properties of the UB regime. The case studied is for S = 0.49 (about 20 %
below the value that defines the transition from UB to VS). Figure 12 shows that the
basic state for S = 0.49 is locally absolutely unstable in the region 0.18 < x1/D < 1.19.
Here, xca denotes the upstream point where the transition from convective to absolute
instability occurs. The results show that the mean base flow obtained from the UB
data is convectively unstable in the region 0 � x1/D � xca , absolutely unstable in the
region xca � x1/D � xac, convectively unstable in the region xac � x1/D � xcs , and
stable in the region x1/D � xcs . The coordinate xcs is the location beyond which the
flow becomes stable. The values of xcs for S = 0.79 and S = 0.49 are found to be 1.4
and 1.8, respectively (see figure 13). It is noted that reducing the value of S increases
the region of absolute instability and that the two absolute instability curves are close
to each other in the region 0.2 to about 0.8.

The aim here is to connect the local absolute instability to the global instability.
The linear results, which are based on the local parallel assumption, provide a wide
range of absolutely unstable frequencies each of which is associated with a particular
spatial position in the absolutely unstable range. Chen & Jirka (1997) found good
agreement between the measured global (shedding) frequency and the frequency of
the absolutely unstable mode that has the maximum growth rate. Here, we investigate
the selection criterion proposed in Koch (1985) and on proposed in Pier & Huerre
(2001) and in Pier (2002). Pier & Huerre (2001) and Pier (2002) suggest that the global
frequency corresponds to the local absolute frequency at the downstream station xca .
The Strouhal number obtained from Koch’s criterion for S = 0.49 is Stac =0.486.
This value is far from the global Strouhal number of 0.392. On the other hand, the
Strouhal number obtained from the criterion in Pier & Huerre (2001) and Pier (2002)
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for S = 0.49 is Stac =0.306. This value seems to show that Stac converges towards the
global frequency as S is reduced towards the transitional value from UB to VS.

The convergence of Stac towards the global shedding frequency as S decreases for
the case of shallow flows is similar to the deep-wake results of Pier (2002) where he
also found that Stac became progressively closer to the global shedding frequency as
Reynolds number is increased from 50 to about 170. This appears to suggest that
the ‘wave-maker’ mechanism proposed by Pier & Huerre (2001) and Pier (2002) to
explain the formation of the VS regime for the case of deep flows remains valid for
the shallow wake flows. This is perhaps not surprising since the large-scale VS motion
for shallow flows has been found to be similar to low Reynolds number VS motion
in deep flows (e.g. Wolanski et al. 1984; Ingram & Chu 1987; Chen & Jirka 1997;
Uijttewaal & Jirka 2003). Essentially, the influence of the small-scale turbulent eddy
viscosity on large-scale VS motion in shallow wakes appears to be similar to the
influence of molecular viscosity on VS motion for low Reynolds number deep wakes.

Given its potential importance to shallow flows, the ‘wave-maker’ mechanism
proposed by Pier & Huerre (2001) and Pier (2002) is briefly described. Impulses
(perturbations) experience amplitude growth as they move downstream in the
convectively unstable region x1/D � xca . In addition, the amplitude of the envelope of
perturbations in the absolutely unstable region xca � x1/D � xac grows and advances
in the upstream direction. A ‘pile-up’ of perturbations occurs at the junction of the
absolute and convective regions located at xca . The nonlinear terms become more
significant as the amplitude of the perturbations at the junction grows and a saturation
state is eventually reached. The perturbations front xca plays the role of ‘wave-maker’.
The frequency of oscillation of the ‘wave-maker’ is governed by the frequency of the
local absolute instability at xca .

7. Amplitude spectra and sensitivity to external forcing
Figure 7 showed that the flow is nearly, but not purely, periodic. In particular,

the amplitude spectra are characterized by a narrow band of dominant frequencies,
but secondary small-amplitude instabilities are beginning to emerge. The unstable
frequency obtained from linear analysis and the global frequency obtained from
experimental data agree with the dominant frequency in figure 7.

According to the classification presented by Chen & Jirka (1997) the unsteady
bubble case corresponds to transition from a stable to a convectively unstable wake.
Convectively unstable flows are known to behave as noise amplifiers (Huerre & Rossi
1998). In particular, Deissler (1987) used a generalized Ginzburg–Landau equation
with an additional term representing the first-order derivative with respect to the
spatial coordinate to model convectively unstable flows in the presence of microscopic
external noise. He showed that a noise-sustained structure is formed as a result of
selective amplification of the noise. Thus, the microscopic external noise plays an
important role in the macroscopic dynamics of the flow. Taking into account the
above results it is plausible to assume that irregularities in the velocity patterns in
figure 7 are observed as a result of noise amplification. The noise in this case could
be due to numerical errors. This hypothesis has been tested by investigating the
sensitivity of the amplitude spectra to a random noise added at the inflow boundary.
The amplitude of the velocity noise is set to 20 % of the ambient velocity. The results
are given in figure 14 and the energy spetrum is insensitive to the inflow perturbation.

It is clear from the figure that the spectra with and without the random forcing
are the same. Therefore, the wide band of small frequencies is not due to noise.
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Figure 14. Amplitude spectra of longitudinal velocity for S = 0.49 at the location
x = 1.73D, y =0.02D: (a) without inflow forcing, (b) with inflow forcing.

The spectra are produced for S values well into the UB regime. Therefore, it is
plausible that the wide band of small-amplitude frequencies is due to secondary
instabilities. This conjecture can be tested using weakly nonlinear analysis. It is
shown in Kolyshkin & Ghidaoui (2003) by means of a weakly nonlinear analysis that
if the stability parameter Sb is slightly below the critical value (that is, if Sb = Sc(1−ε2))
then the evolution of the most unstable mode (in the convectively unstable regime)
in the reference frame moving with group velocity cg is described by a nonlinear
Ginzburg–Landau equation of the form

Aτ = σA + δAξξ − µ|A|2A, (7.1)

where A is a slow varying amplitude of the perturbation, τ = ε2t and ξ = ε(x − cgt)
are ‘slow’ time and spatial coordinates, and σ = σr + iσi , δ = δr + iδi and µ = µr + iµi

are complex coefficients. Explicit formulas for calculation of the coefficients σ , δ and
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R c1 c2

−0.2 −0.812 2.157
−0.4 −0.803 2.233
−0.5 −0.800 2.190
−0.6 −0.799 2.096
−0.8 −0.795 1.784
−0.9 −0.798 1.541

Table 3. Values of c1 and c2 in equation (7.4) for various R values and N = 1.

µ are given in Kolyshkin & Ghiadoui (2003). Using the substitutions

τ ′ = τσr, ξ ′ = ξ

√
σr

δr

, A′ = A

√
µr

σr

e−ic0σr τ

equation (7.1) is transformed to the form

A′
τ ′ = A′ + (1 + ic1)A

′
ξ ′ξ ′ − (1 + ic2)|A′|2A′, (7.2)

where

c0 =
σi

σr

, c1 =
δi

δr

, c2 =
µi

µr

.

The Ginzburg–Landau equation is widely used as a model equation in science and
engineering. An excellent recent survey of the properties and solutions of equation
(7.2) is given by Aronson & Kramer (2002). In particular, it is well-known that
equation (7.2) has a plane wave solution of the form

A = C ei(Kξ ′−Ωτ ′). (7.3)

Secondary instability of the complex Ginzburg–Landau equation is studied in
Couairon & Chomaz (1999) where it is shown, in particular, that a sufficient condition
for instability of a plane wave solution is (this type of instability is referred to as the
Benjamin–Feir instability)

1 + c1c2 < 0. (7.4)

On the other hand, if the expression 1+c1c2 is positive then solution (7.3) may be either
stable or unstable for a finite wavenumber K . In order to see which scenario takes
place for shallow wakes we have calculated the coefficients of the Ginzburg–Landau
equation (7.2) using the following model profile (Monkewitz 1988):

u0(y) = 1 +
2R

1 − R
[1 + sinh2N (αy)]−1, (7.5)

where R =(Uc − U )/(Uc + U ), α = sinh−1(1), Uc is the centreline velocity, U is the
ambient velocity, LX is the wake half-width defined as the distance from the axis of
the wake such that U (LX) = U∗ = (Uc + U )/2, and N is a parameter which reflects the
shape of the velocity profile, N � 1. The results in table 3 are for N = 1 and several
values of R.

Some conclusions can be drawn from table 3. The coefficient c2 is positive for all
R. The local value of the bed friction parameter varies with R, which may explain
the variation in c2 with R. This indicates an amplitude saturation at large times. This
is in agreement with results shown in figure 7. In addition, for all cases calculated
the instability condition (7.4) is satisfied. Thus, pure periodic waves (7.3) are unstable
(and therefore are not observable). This conclusion is consistent with the time series
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Figure 15. Amplitude spectra of longitudinal velocity for S = 0.16. (a) x = 1.19D, y =0.02D;
(b) x = 0.73D, y = 0.18D.

data in figure 7, where the observed patterns are clearly not periodic. That is, the wide
band of small-amplitude frequencies for the UB case appears to be due to secondary
instabilities and not noise.

Figure 15 shows the spectra for the longitudinal velocity components at the two
different locations for the vortex street case (S = 0.16). The spectrum for the VS case
is wider than that of the UB case. The amplitude of the secondary instabilities is
also larger than the UB case. The Strouhal number corresponding to the dominant
frequency is about 0.24, which is in very good agreement with the experimental data.
Again, the results show that the motion is nearly, but not fully periodic. Although
the motion is still dominated by the large-amplitude oscillation associated with
the shedding frequency, small-amplitude turbulent fluctuations are also present. The
amplitude spectra were found to be insensitive to random forcing at the upstream
boundary condition (see figure 16), implying that the wide band of small-amplitude
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Figure 16. Amplitude spectra of longitudinal velocity for S = 0.16 at the location
x = 0.73D, y = 0.18D: (a) without inflow forcing, (b) with inflow forcing.

frequency is not due to noise. The data in figure 16 are produced by prescribing a
broad-band forcing at the upstream end. The amplitude of the perturbations is equal
to 20 % of the inflow velocity. The insensitivity of the VS regime to random noise is
consistent with the fact that this regime is governed by absolute instabilities. Absolute
instabilities grow locally with time and overwhelm any noise signal. Therefore, the
wide band of small-amplitude frequencies as well as the widening of the dominant
frequency band are probably due to secondary instabilities. The sensitivity of the VS
regime to random perturbation is investigated here. No major differences appear in
the spectrum regarding dominant frequency and amplitude.

8. Conclusions
Shallow wake flows behind circular cylinders are investigated using linear, weakly

nonlinear and nonlinear analysis. The analysis is based on the classical depth-averaged
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shallow water equations in which the bottom friction is represented using the quadratic
wall shear law. The nonlinear model is used to compute velocity profiles, shedding
frequencies, wake size and wake centreline velocity. Comparison of the computed
and measured quantities shows that the depth-averaged shallow water model gives
reasonable results for the UB and VS cases, but not for the SB case. The fact
that the depth-averaged model becomes less viable for shallow wakes as S increases
has also been reported in Lloyd & Stansby (1997a, b). When S is small, the wake
is characterized by large-scale two-dimensional turbulent coherent structures. The
influence of the bottom friction and its associated three-dimensional turbulence on
these two-dimensional turbulent structures is small when S small. Therefore, flows
with small S values such as VS and UB are more amenable to two-dimensional
depth-averaged modelling. On the other hand, as S increases, the large-scale two-
dimensional turbulent coherent structures become suppressed and begin to lose their
coherence due to the increased influence of the bottom friction and its associated
three-dimensional turbulence. The numerical tests indicate that the applicability of
the depth-averaged model is limited to S values of the order of 0.6 or below. As a
result, the stability analyses conducted in this paper are limited to S values below
0.55.

Flow patterns for different values S ranging from 0.17 to 0.51 obtained from
the nonlinear numerical simulation are consistent with the flow patterns observed
in Chen & Jirka (1995). The processes involved in the formation of large-scale
coherent structures in the lee of the island are captured well by the nonlinear model.
In particular, a short distance downstream of the cylinder, the shear layer that
develops at either side of the cylinder begins to oscillate in the cross-stream direction.
The combination of shear layer oscillation and lateral velocity variation cause the
streamlines to fold and results in the formation of vortices. These vortices are found
to undergo pairing. The dynamics of vortex generation and vortex pairing is governed
by the stability parameter S.

A link between the shedding frequency of the fully developed VS and the
characteristics of the absolute instability is sought through the selection criteria
presented in Koch (1985) and in Pier & Huerre (2001) and Pier (2002). Streamwise
time-averaged velocity profiles are computed and used as base flow profiles for the
linear analysis. Linear analysis of the time-averaged velocity profile obtained from
the VS data gives a region of absolute instability in the vicinity of the cylinder,
followed by a region of convective instability, which is in turn followed by a stable
region. The frequency obtained from Koch’s criterion is in good agreement with the
shedding frequency of the VS. Such good agreement is probably due to the fact that
the mean base flow is derived from the VS data. That is, linear analysis of a base
flow based on the VS data rediscovers the frequency of the very regime that the
basic state is obtained from, but cannot reveal the mechanism which governs the
shedding frequency. This conclusion is particularly relevant to studies that investigate
the stability of experimentally derived time-averaged VS profiles (e.g. Socolofsky et al.
2003).

Linear analysis of velocity profiles in the UB regime shows results in an absolutely
unstable region sandwiched between two convectively unstable regions. The values
of the Strouhal numbers obtained on the basis of the Koch criterion are in poor
agreement with the Strouhal number of the fully developed VS. On the other hand,
the values of the Strouhal numbers obtained from the criterion given in Pier & Huerre
(2001) become closer to the Strouhal number of the fully developed VS. Therefore,
the ‘wave-maker’ mechanism proposed by Pier & Huerre (2001) and Pier (2002) to
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explain the formation of the VS regime for the case of deep flows appears to remain
valid for shallow wake flows. Essentially, perturbations are expected to pile up at the
point of transition from the convectively unstable region to the absolutely unstable
region (xca). This pile-up of perturbations drives the VS motion and the driving
frequency governed by the frequency obtained from the local linear analysis at xca .

The computed velocity spectra for the unsteady bubble regime involve small-
amplitude frequencies, associated with secondary instabilities, and a narrow band of
dominant frequencies, associated with the primary instability. The computed dominant
frequency is in good agreement with the measured frequency. Amplitude velocity
spectra are found to be insensitive to random forcing at the inflow boundary, implying
that the wide band of small-amplitude frequencies is not due to noise. The values
of the coefficients of the Ginzburg–Landau equation are found to belong to the
unstable Benjamin–Feir regime, which indicates that the wide band of small-amplitude
frequency is due to secondary instabilities that develop when the value of the stability
parameter is well into the UB regime. The spectra for the VS case are similar in
shape to those of the UB case. However, the amplitude of VS oscillation is larger
than that UB while the shedding frequency of the VS is smaller than that of the UB.
The computed Strouhal number based on the dominant frequency is around 0.24.
The measured VS shedding frequency is about 0.21.

We are indebted to the anonymous reviewers for their highly constructive comments.
This work is supported by the Research Grants Council of Hong Kong under Project
No. HKUST6092/00E.

Appendix
The explicit form of the net flux is

F + Ftc = α1{a− + a+} + α2{n · ∇(b− + b+) + t · ∇(d− + d+)} +

(
α3 + α5

∂

∂t

)
e

+ α4{n · ∇g + t · ∇k} (A 1)

where Vn = ˆ̄un/
√

gh̄; α1(t) = exp(−(t − t k)/tc); α2(t) = − (t − t k)α1(t); α3(t) = 1 − α1;
α4(t) = tc(−1 + α1(t)) + (t − t k)α1(t); and α5(t) = (t − t k) + tc(−1 + α1(t)). The vectors
a−, b− and d− are evaluated at x−

α ; a+, b+ and d+ are evaluated at x+
α and e, g and

k are evaluated at xα (i.e. on ∂Ωij ). The explicit forms of these vectors are
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/√
π

]
−

, (A 2)
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√
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√
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k = h̄

[
ˆ̄un

ˆ̄ut

ˆ̄un
ˆ̄ut

ˆ̄u + ( ˆ̄ut n + ˆ̄un t) 1
2
gh̄

]
. (A 10)

Relations (A 1) through (A 10) provide the BGK-based algorithm for the net flux
from (i, j ). The flow depth and velocities and their slopes at x+

α , xα are x−
α are

evaluated using the standard Monotonic Upstream-centred Scheme for Conservation
Laws (MUSCL) limiter.
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